Selecting machine learning models for metallic nanoparticles
نویسندگان
چکیده
منابع مشابه
Machine Learning Models for Housing Prices Forecasting using Registration Data
This article has been compiled to identify the best model of housing price forecasting using machine learning methods with maximum accuracy and minimum error. Five important machine learning algorithms are used to predict housing prices, including Nearest Neighbor Regression Algorithm (KNNR), Support Vector Regression Algorithm (SVR), Random Forest Regression Algorithm (RFR), Extreme Gradient B...
متن کاملDust source mapping using satellite imagery and machine learning models
Predicting dust sources area and determining the affecting factors is necessary in order to prioritize management and practice deal with desertification due to wind erosion in arid areas. Therefore, this study aimed to evaluate the application of three machine learning models (including generalized linear model, artificial neural network, random forest) to predict the vulnerability of dust cent...
متن کاملBias correction for selecting the minimal-error classifier from many machine learning models
MOTIVATION Supervised machine learning is commonly applied in genomic research to construct a classifier from the training data that is generalizable to predict independent testing data. When test datasets are not available, cross-validation is commonly used to estimate the error rate. Many machine learning methods are available, and it is well known that no universally best method exists in ge...
متن کاملUsing Log-linear Models for Selecting Best Machine Translation Output
We describe a set of experiments to explore statistical techniques for ranking and selecting the best translations in a graph of translation hypotheses. In a previous paper (Carl, 2007) we have described how the hypotheses graph is generated through shallow mapping and permutation rules . We have given examples of its nodes consisting of vectors representing morpho-syntactic properties of words...
متن کاملMachine-learning paradigms for selecting ecologically significant input variables
Harmful algal blooms, which are considered a serious environmental problem nowadays, occur in coastal waters in many parts of the world. They cause acute ecological damage and ensuing economic losses, due to fish kills and shellfish poisoning as well as public health threats posed by toxic blooms. Recently, data-driven models including machine learning (ML) techniques have been employed to mimi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nano Futures
سال: 2020
ISSN: 2399-1984
DOI: 10.1088/2399-1984/ab9c3b